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L86 Letters to the Editor 

Hence (24) predicts that in two dimensions g = $ while in three dimensions g = $6. 
The validity of results (5) and (24) can be tested using numerical data. The 

numerical data support the relation ( 5 )  and support the assumptions made in its 
derivation. On the other hand, relation (24) is not supported by the numerical data 
for self-avoiding walks in three dimensions. The numerical work will be published 
at a later date. 
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On the exact propagator 

Abstract. We evaluate the propagator for an electron subject to a harmonic 
force, a constant magnetic field and a time prescribed electric field, exactly. 
However, our primary concern is to draw attention to important works in the 
literature that have been overlooked, a result of which has brought some dupli- 
cation without always corresponding methodological improvement. 

We employ functional integration and a result due to Pauli (1952), who evaluated 
the propagator for a harmonically bound particle under the influence of a time varying 
force. Pauli's method is based on Van Vleck's work (1928) in connection with the 
correspondence principle. Extensions of these works appear in a beautiful paper of 
De Witt (1957) dealing with quantization in curvilinear spaces. 

The functional integration methods are mainly Lagrangian based, and the deriva- 
tion that follows demonstrates the power of Lagrangian quantum mechanics in that 
an exact propagator can be obtained in cases in which neither energy levels nor eigen- 
functions in the configuration representation exist. However, one should not preclude 
the existence of eigenfuctions, for example, in the momentum representation. An 
example of this nature is provided in ter Haar (1964) for the propagator of a particle 
in a constant field of force. 
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The various particular cases of the present evaluation appeared in a paper by 
Kennard (1927), who studied their transformation properties. Kennard was the first 
to obtain the propagator for the free particle, the harmonic oscillator, the particle 
subject to a constant force, and the charged particle in a constant magnetic field, using 
a semiclassical approach. 

Sondheimer and Wilson (1951) obtained the propagator for an electron in a 
constant uniform magnetic field in their work on the diamagnetism of free electrons. 
Their method basically is a direct solution of the appropriate Schrodinger equation. 
. Apparently the most elegant and far reaching method of derivation is that of 

functional integration. The above cases and certain of their combinations are found 
as problems in the book of Feynman and Hibbs (1965). Also the paper of 
Ab6 (1954, in japanese) develops a systematic way for the derivation of these propa- 
gators. The methods employed in AbC’s paper can be found in Papadopoulos (1968) 
in connection with functional integrals in Brownian motion. Choquard (1955) gives 
a detailed account of the semiclassical treatment of quantum mechanics using Feyn- 
man’s representation. 

In addition to the literature up to the mid-fifties, re-evaluations of these propa- 
gators appear every now and then, with methods which generally involve higher 
complexity. For example, the propagator for the harmonic oscillator is dealt with in 
a paper by Davies (1957), using functional integration, but in a rather incomplete 
manner in the sense that the evaluation of the pre-exponential time dependent factor 
of the propagator was left out. Lukes and Somaratna (1969) re-evaluate the propa- 
gator for a charged particle in a constant electric field, in connection with Stark effect 
calculations. The method used was a path integral one in phase space. (For certain 
corrections in this paper the reader is referred to Whitcombe 1971.) 

We wish now to employ the Van Vleck-Pauli method for obtaining the propa- 
gator of an electron subject to a combination of all the potentials mentioned earlier on. 

The Lagrangian for such an electron, when the magnetic field is taken in the 
z direction, is given by 

m 
~ [ g l =  z(~2-n2g2+w~l~gl)+eo(T). g (1) 

where w = eB/m is the cyclotron frequency, s1 the oscillator frequency, and gL 
denotes the component of the electron position vector perpendicular to the magnetic 
field B. The term J is the (2 x 2) matrix given by 

and its properties and usefulness are given in an earlier work (Papadopoulos and 
Jones 1971) in connection with the magnetization of conduction electrons, in simple 
metals. There the propagator for an electron in a magnetic field and an impulsive 
electric field is obtained. 

The required propagator is given by the conditional functional integral 

K(xtlx’0) = 1 exp(i  f L [ ~ ( T ) ]  d7) 9 [ g ]  
0 

where 9 [ g ]  is the Feynman path differential measure. 
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Now, since the Lagrangian (1) is quadratic, the functional integral (2) can be 
evaluated exactly, using the Van Vleck-Pauli result, in terms of the classical action, 
S(xtldO), of an electron starting from x’ at time t = 0 and reaching x at time t. 

We have 

For the details see De Witt (1957). 
In our opinion (3) furnishes the simplest and most effective way of obtaining the 

propagator exactly, when dealing with quadratic Lagrangians. 
As is well known the classical action S obeys the Hamilton-Jacobi equation from 

which it can be obtained, but we prefer to derive it from the equations of motion 
associated with the Lagrangian (1) 

subject to the end conditions g(0) = x’, g(t) = x. The algebra for the solution of 
the equations of motion (4) can be significantly reduced by employing a method 
similar to the one used in Papadopoulos (1971) in connection with the magnetization of 
harmonically bound charges. 

We confine ourselves here to writing down the result for the classical action 
t 

&’(xtlx’O) = 1 L[X(T)]dT 
0 

where X(T) is the classical path between X’ and x, and Q’ = {Qa+(w/2)2)1’a. Using 
( 5 )  we find the pre-exponential factor in (3) and the required propagator takes the 
form 
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It is now a matter of routine exercise to pass to the various limits as Q, U,  8, or 
combinations of them and obtain the different cases appearing in the literature. 
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Absolute intensities of cosmic ray muons above 
3.48 and 7.12 GeVlc 

Abstract. The new Durham spectrograph MARS has been used to determine 
absolute intensities of cosmic ray muons in the near vertical direction with 
momenta above 3.48 and 7.12 GeVlc. The intensities are found to be close to 
those previously reported by Aurela and Wolfendale in 1967, the present 
intensities being higher by some (7.7 k 1.3)% and (1 -7 1.4)%, at the respective 
momenta. Comparison is also made with the results of other recent 
measurements. 

The momentum spectrum of cosmic ray muons at ground level is a key 
measurement not only for cosmic ray phenomenology but also because of it's relevance 
to the energetic interactions in the upper levels of the atmosphere, from which the 
parents of the muons are derived, and to the interpretation of the subsequent behaviour 
of the muons in their penetration to great depths underground. Absolute intensities 
rather than spectral shapes are often of importance and where these have not been 
determined in experiments (usually because of difficulties concerning uncertain edge 
effects of detectors) it has been customary to normalize the results to a value given 
by Rossi (1948) at 1 GeV/c. This procedure has been followed by many workers but, 


